DREAMS: deep read-level error model for sequencing data applied to low-frequency variant calling and circulating tumor DNA detection, Genome Biology

Por um escritor misterioso

Descrição

Circulating tumor DNA detection using next-generation sequencing (NGS) data of plasma DNA is promising for cancer identification and characterization. However, the tumor signal in the blood is often low and difficult to distinguish from errors. We present DREAMS (Deep Read-level Modelling of Sequencing-errors) for estimating error rates of individual read positions. Using DREAMS, we develop statistical methods for variant calling (DREAMS-vc) and cancer detection (DREAMS-cc). For evaluation, we generate deep targeted NGS data of matching tumor and plasma DNA from 85 colorectal cancer patients. The DREAMS approach performs better than state-of-the-art methods for variant calling and cancer detection.
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
PDF) Error Characterization and Statistical Modeling Improves
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Integration of intra-sample contextual error modeling for improved
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Phasing analysis of lung cancer genomes using a long read
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Accurate detection of circulating tumor DNA using nanopore
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Analytical and Clinical Validation of an Amplicon-based Next
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
DREAMS: deep read-level error model for sequencing data applied to
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Evaluating the performance of low-frequency variant calling tools
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
DREAMS: deep read-level error model for sequencing data applied to
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
DREAMS: Deep Read-level Error Model for Sequencing data applied to
DREAMS: deep read-level error model for sequencing data applied to  low-frequency variant calling and circulating tumor DNA detection, Genome  Biology
Types of errors. A screenshot from the IGV browser [21] showing
de por adulto (o preço varia de acordo com o tamanho do grupo)