Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars

Por um escritor misterioso

Descrição

Scientific Article | Este trabalho apresenta protocolos de microfabricação para alcançar cavidades e pilares com perfis reentrantes e duplamente reentrantes
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Realizing surface amphiphobicity using 3D printing techniques: A critical move towards manufacturing low-cost reentrant geometries - ScienceDirect
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
PDF) Proof-of-Concept for Gas-Entrapping Membranes Derived from Water-Loving SiO2/Si/SiO2 Wafers for Green Desalination
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Biomimetic Coating-free Superomniphobicity
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces.
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Scanning electron micrographs of silica-GEMs. Shown are (A) a tilted
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
One-Step Fabrication of Flexible Bioinspired Superomniphobic Surfaces
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
The pipeline of reflection decomposition algorithm.
Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping  Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars
Gradient wettability induced by deterministically patterned nanostructures
de por adulto (o preço varia de acordo com o tamanho do grupo)