Biosensors, Free Full-Text
Por um escritor misterioso
Descrição
Liver fibrosis is a key pathological precondition for hepatocellular carcinoma in which the severity is confidently correlated with liver cancer. Liver fibrosis, characterized by gradual cell loss and excessive extracellular matrix deposition, can be reverted if detected at the early stage. The gold standard for staging and diagnosis of liver fibrosis is undoubtedly biopsy. However, this technique needs careful sample preparation and expert analysis. In the present work, an ex vivo, minimally destructive, label-free characterization of liver biopsies is presented. Through a custom-made experimental setup, liver biopsies of bile-duct-ligated and sham-operated mice were measured at 8, 15, and 21 days after the procedure. Changes in impedance were observed with the progression of fibrosis, and through data fitting, tissue biopsies were approximated to an equivalent RC circuit model. The model was validated by means of 3D hepatic cell culture measurement, in which the capacitive part of impedance was proportionally associated with cell number and the resistive one was proportionally associated with the extracellular matrix. While the sham-operated samples presented a decrease in resistance with time, the bile-duct-ligated ones exhibited an increase in this parameter with the evolution of fibrosis. Moreover, since the largest difference in resistance between healthy and fibrotic tissue, of around 2 kΩ, was found at 8 days, this method presents great potential for the study of fibrotic tissue at early stages. Our data point out the great potential of exploiting the proposed needle setup in clinical applications.
Biosensors for healthcare: current and future perspectives: Trends in Biotechnology
Biosensors, Free Full-Text
Innovations in Label-Free Detection Biocompare: The Buyer's Guide for Life Scientists
Biosensors, Free Full-Text
Biosensors, Free Full-Text
Metal Nanoparticles‐Enhanced Biosensors: Synthesis, Design and Applications in Fluorescence Enhancement and Surface‐enhanced Raman Scattering - Yaraki - 2020 - Chemistry – An Asian Journal - Wiley Online Library
Understanding Statistical Error A Primer For Biologists Download - Colaboratory
Enzyme-based electrochemical biosensors for food safety: a review
Cell-Free Biosensors: Synthetic Biology Without Borders
Device integration of electrochemical biosensors
Biosensors, Free Full-Text
de
por adulto (o preço varia de acordo com o tamanho do grupo)